1. Let d = 1 and consider the probability measures on \mathbb{R} given by

$$\mu \sim \text{Uniform}[0,2], \quad \nu_n = \left(1 - \frac{1}{n}\right) \text{Uniform}[0,2] + \frac{1}{2n}\delta_{2n}(\cdot),$$

where δ_n is the dirac measure at n.

- (a) (5 points) Show that $\nu_n \xrightarrow{w} \mu$ as $n \to \infty$.
- (b) (10 points) Find T_n the optimal transport map from μ to ν_n
- (c) (5 points) Show that $W_2(\mu, \nu_n) \ge n$ and conclude that $W_2(\mu, \nu_n) \not\rightarrow W_2(\mu, \nu)$ as $n \to \infty$.
- 2. Let $d \in \mathbb{N}$ and $\mathcal{P}_2(\mathbb{R}^d)$ be the space of probability measures on \mathbb{R}^d which have second moment. For each of the following find the optimal transport map from μ to ν .
 - (a) (10 points) $\mu = \text{Uniform}([0, 1]^d), \nu = \text{Uniform}([0, 3]^d)$
 - (b) (10 points) $\mu = \mathcal{N}(0, I), \nu = \mathcal{N}(5, I)$ in \mathbb{R}^d .
- 3. Let $\{\theta_t\}_{t>0}$ be a continuous curve in \mathbb{R}^d .
 - (a) (10 points) Show that the curve $t \mapsto \mu_t := \delta_{\theta_t}(\cdot)$ is continuous on $(\mathcal{P}(\mathbb{R}^d), \mathcal{W}_2(\mathbb{R}^d))$.
 - (b) (10 points) Can you impose additional conditions of θ_t so that the curve in (a) is absolutely continuous ?
- 4. Let $\mathcal{P}_2(\mathbb{R})$ be the space of probability measures on \mathbb{R} which have second moment. Consider the lower semi continuous function, $\mathscr{F}: \mathcal{P}_2(\mathbb{R}^d) \to [0, \infty)$, given by

$$\mathscr{F}(\mu) = \frac{1}{2} \int_{\mathbb{R}^d} ||x||^2 d\mu(x)$$

- (a) (5 points) Find the minimizer of \mathscr{F}
- (b) (5 points) Find

$$\nabla_{\mathcal{W}}(\mathscr{F})(\mu)(x), \forall \ x \in \mathbb{R}^d$$

and the continuity equation for the gradient flow.

(c) (5 points) Show that

$$X_t^x = \exp(-t)x$$

is the unique solution to the Cauchy problem,

$$\dot{X}_t^x = -(X_t^x) , \ X_0^x = x$$

- (d) (5 points) Assume $\mu_0 \in \mathcal{P}_2(\mathbb{R})$ and $X_0 \sim \mu_0$. Now define, $\mu_t = X_{t\#}\mu_0$ (Push forward of μ_0 via the map X_t). Show that $\mathcal{W}_2(\mu_t, \delta_0) \leq e^{-t}\mathcal{W}_2(\mu_0, \delta_0)$ for all t > 0 where \mathcal{W}_2 is the Wasserstein-2 metric.
- 5. Let $\mathcal{P}_2(\mathbb{R})$ be the space of probability measures on \mathbb{R} which have second moment. Consider the function, $\mathscr{F}: \mathcal{P}_2(\mathbb{R}) \to \mathbb{R} \cup \{\infty\}$, given by

$$\mathscr{F}(\mu) = \begin{cases} \frac{1}{2} \int_{\mathbb{R}^d} ||x||^4 d\mu(x) & \text{ if finite.} \\ \\ \infty & \text{ otherwise} \end{cases}$$

- (a) (5 points) Find the minimizer of \mathscr{F}
- (b) (5 points) Find $\nabla_{\mathcal{W}} (\mathscr{F})(\mu)(x)$ and identify the continuity equation for the gradient flow w.r.t. \mathscr{F} .
- (c) (5 points) Show that

$$X_t^x = \frac{1}{\sqrt{2t + 1/x^2}}$$

is the unique solution to the Cauchy problem,

$$\dot{X_t}^x = -(X_t^x)^3 , \ X_0^x = x$$

(d) (5 points) Assume μ_0 is in the domain of \mathscr{F} and $X_0 \sim \mu_0$. Find the law of $\mu_t = X_{t\#}\mu_0$ in terms of X_0 and conclude that the convergence to the minimizer is not an exponential rate in the Wasserstein-2 metric.